Extensions 1→N→G→Q→1 with N=C23×D7 and Q=C2

Direct product G=N×Q with N=C23×D7 and Q=C2
dρLabelID
D7×C24112D7xC2^4224,196

Semidirect products G=N:Q with N=C23×D7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C23×D7)⋊1C2 = C22⋊D28φ: C2/C1C2 ⊆ Out C23×D756(C2^3xD7):1C2224,77
(C23×D7)⋊2C2 = C23⋊D14φ: C2/C1C2 ⊆ Out C23×D756(C2^3xD7):2C2224,132
(C23×D7)⋊3C2 = C22×D28φ: C2/C1C2 ⊆ Out C23×D7112(C2^3xD7):3C2224,176
(C23×D7)⋊4C2 = C2×D4×D7φ: C2/C1C2 ⊆ Out C23×D756(C2^3xD7):4C2224,178
(C23×D7)⋊5C2 = C22×C7⋊D4φ: C2/C1C2 ⊆ Out C23×D7112(C2^3xD7):5C2224,188

Non-split extensions G=N.Q with N=C23×D7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C23×D7).1C2 = D7×C22⋊C4φ: C2/C1C2 ⊆ Out C23×D756(C2^3xD7).1C2224,75
(C23×D7).2C2 = C2×D14⋊C4φ: C2/C1C2 ⊆ Out C23×D7112(C2^3xD7).2C2224,122
(C23×D7).3C2 = D7×C22×C4φ: trivial image112(C2^3xD7).3C2224,175

׿
×
𝔽